Real or fake text? We can learn to spot the difference
Listen to this article
The most recent generation of chatbots has surfaced longstanding concerns about the growing sophistication and accessibility of artificial intelligence.
Fears about the integrity of the job market — from the creative economy to the managerial class — have spread to the classroom as educators rethink learning in the wake of ChatGPT.
Yet while apprehensions about employment and schools dominate headlines, the truth is that the effects of large-scale language models such as ChatGPT will touch virtually every corner of our lives. These new tools raise society-wide concerns about artificial intelligence’s role in reinforcing social biases, committing fraud and identity theft, generating fake news, spreading misinformation and more.
A team of researchers is seeking to empower tech users to mitigate these risks. In a peer-reviewed paper presented at the February 2023 meeting of the Association for the Advancement of Artificial Intelligence, the authors demonstrate that people can learn to spot the difference between machine-generated and human-written text.
Before you choose a recipe, share an article, or provide your credit card details, it’s important to know there are steps you can take to discern the reliability of your source.
The study provides evidence that AI-generated text is detectable.
What the researchers say: “We’ve shown that people can train themselves to recognize machine-generated texts,” the lead author said. “People start with a certain set of assumptions about what sort of errors a machine would make, but these assumptions aren’t necessarily correct. Over time, given enough examples and explicit instruction, we can learn to pick up on the types of errors that machines are currently making.”
“AI today is surprisingly good at producing very fluent, very grammatical text,” he added. “But it does make mistakes. We prove that machines make distinctive types of errors — common-sense errors, relevance errors, reasoning errors and logical errors, for example — that we can learn how to spot.”
The study uses data collected using Real or Fake Text?, an original web-based training game. This training game is notable for transforming the standard experimental method for detection studies into a more accurate recreation of how people use AI to generate text.
In standard methods, participants are asked to indicate in a yes-or-no fashion whether a machine has produced a given text. This task involves simply classifying a text as real or fake and responses are scored as correct or incorrect.
The new model significantly refines the standard detection study into an effective training task by showing examples that all begin as human-written. Each example then transitions into generated text, asking participants to mark where they believe this transition begins. Trainees identify and describe the features of the text that indicate error and receive a score.
The study results show that participants scored significantly better than random chance, providing evidence that AI-created text is, to some extent, detectable.
“Our method not only gamifies the task, making it more engaging, it also provides a more realistic context for training,” the researchers explained. “Generated texts, like those produced by ChatGPT, begin with human-provided prompts.”
The study speaks not only to artificial intelligence today, but also outlines a reassuring, to some even exciting, future for our relationship to this technology.
“Five years ago,” the lead author said “models couldn’t stay on topic or produce a fluent sentence. Now, they rarely make a grammar mistake. Our study identifies the kind of errors that characterize AI chatbots, but it’s important to keep in mind that these errors have evolved and will continue to evolve. The shift to be concerned about is not that AI-written text is undetectable. It’s that people will need to continue training themselves to recognize the difference and work with detection software as a supplement.”
“People are anxious about AI for valid reasons,” the researchers added. “Our study gives points of evidence to allay these anxieties. Once we can harness our optimism about AI text generators, we will be able to devote attention to these tools’ capacity for helping us write more imaginative, more interesting texts.”
“There are exciting positive directions that you can push this technology in,” they concluded. “People are fixated on the worrisome examples, like plagiarism and fake news, but we know now that we can be training ourselves to be better readers and writers.”
So, what? Let’s hope so!
Join the discussion
More from this issue of TR
You might be interested in
Back to Today's ResearchJoin our tribe
Subscribe to Dr. Bob Murray’s Today’s Research, a free weekly roundup of the latest research in a wide range of scientific disciplines. Explore leadership, strategy, culture, business and social trends, and executive health.